From 1 - 10 / 60
  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset visible images from MSG satellites over the Mediterranean. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old. The geographic extent for images within this datasets is available via the linked documentation 'MSG satellite imagery product geographic area details'. Each MSG imagery product area can be referenced from the third and fourth character of the image product name giving in the filename. E.g. for EEAO11 the corresponding geographic details can be found under the entry for area code 'AO' (i.e West Africa).

  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset contains infa-red images from MSG satellites over Europe and the North Atlantic. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old. The geographic extent for images within this datasets is available via the linked documentation 'MSG satellite imagery product geographic area details'. Each MSG imagery product area can be referenced from the third and fourth character of the image product name giving in the filename. E.g. for EEAO11 the corresponding geographic details can be found under the entry for area code 'AO' (i.e West Africa).

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains ECMWF Convective precipitation model from a ECMWF Computer.

  • Microphysics of Antarctic Clouds (MAC) is a active NERC (Natural Environment Research Council) funded project (NE/K01305X/1). This dataset collection contains NAME dispersion footprints model plots. The largest uncertainties in future climate predictions highlighted by the Intergovernmental Panel on Climate change (IPCC 2007) arise from our lack of knowledge of the interaction of clouds with solar and terrestrial radiation (Dufresene & Bony, 2008). In Antarctica clouds play a major role in determining the continent's ice sheet radiation budget, its surface mass balance and ozone climatology. However in spite of this there are few in situ measurements of cloud properties, aerosol numbers, Cloud Condensation Nuclei (CCN) or Ice Nuclei (IN) with the main focus being on remote sensing data sets (see the review by Bromwich et al 2012). As a result the skill in climate and forecast models at high latitudes is significantly poorer than at mid latitudes. In this project a more representative of the Antarctic continent's coastal region was used. It is in this coastal region that clouds will have the biggest impact on the climate as in the interior of the continent the total cloud cover is less (Lachlan-Cope 2010) and those clouds that exist are more tenuous. To achieve this flights were conducted from the Halley research station.

  • The Icelandic Volcano, Eyjafjallajokull, started erupting on 14th April 2010. The volcanic ash cloud produced covered much of Northern Europe for several weeks causing extensive disruption to air travel. The UK and European atmospheric communities had many instruments - both airborne and ground-based, remote sensing and in-situ - taking measurements of the ash cloud throughout this period. This dataset contains Leosphere and Halo Doppler Lidar images from the Chilbolton Observatory, Hampshire.

  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset contains infa-red images from MSG satellites over Western Europe. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old. The geographic extent for images within this datasets is available via the linked documentation 'MSG satellite imagery product geographic area details'. Each MSG imagery product area can be referenced from the third and fourth character of the image product name giving in the filename. E.g. for EEAO11 the corresponding geographic details can be found under the entry for area code 'AO' (i.e West Africa).

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains CO ouputs from the TOMCAT model. “Chemical attributes” are found by interpolating chemical distributions (in space and time) from a global chemical transport model to the origin of each trajectory (using its full length). During the ICARTT campaign the TOMCAT global CTM is being run in near-real time (about 19 hours behind present) driven by wind analyses from the ECMWF. The back trajectories are sufficiently long that a TOMCAT chemical analysis exists even at the origin of forecast trajectories. For example, the longest forecast lead time for the Azores domain is 5 days but the back trajectories are 7 days long so that the TOMCAT fields dating from 2 days before the latest meteorological analysis are used to find the attributes. For the US East Coast domain the back trajectories are shorter (3 days long) but the longest lead time is also 3 days so that the chemical attributes can be calculated as soon as TOMCAT has been brought up to date with the latest ECMWF analyses.

  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset visible images from MSG satellites over the tropics. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old. The geographic extent for images within this datasets is available via the linked documentation 'MSG satellite imagery product geographic area details'. Each MSG imagery product area can be referenced from the third and fourth character of the image product name giving in the filename. E.g. for EEAO11 the corresponding geographic details can be found under the entry for area code 'AO' (i.e West Africa).

  • Supporting model output from the Met Office's Air Quality Unified Model (AQUM) were made available to participants during the NERC funded RONOCO (ROle of Nighttime chemistry in controlling the Oxidising Capacity of the AtmOsphere) consortium project. The overall objective of this consortium project was to advance substantially our understanding of night-time chemical processes and their impacts on the troposphere through a combined programme of instrument development, airborne measurements and numerical modelling. This dataset contains model output images of chemical species. These data cover 2010 period only.

  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset contains cloud and snow mask product images from MSG satellites over Europe and the North Atlantic. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old. The geographic extent for images within this datasets is available via the linked documentation 'MSG satellite imagery product geographic area details'. Each MSG imagery product area can be referenced from the third and fourth character of the image product name giving in the filename. E.g. for EEAO11 the corresponding geographic details can be found under the entry for area code 'AO' (i.e West Africa).